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INTRODUCTION

Urban remote sensing in Sub-Saharan Africa

— Lower satellite data availability

— Tropical climate: high cloud cover

— Arid climate: spectral confusion between built-up and bare soil

— Lack of reference datasets



INTRODUCTION

Landsat data availability

— Landsat 8 : systematic global acquisition

— Landsat 7 : 12% of the acquisitions over Africa

— Landsat 5 : 6% of the acquisitions over Africa

— Many locations in Africa without any Landsat acquisition
before 1998.

— Only 5 scenes with less than 10% cloud cover in Kinshasa



INTRODUCTION

Figure 1. Spectral confusion between bare soil and built-up areas in Gao, Mali:
a) VHR image of the area of interest, b) Near-infrared Landsat band.
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Figure 2. Inter-urban heterogeneity in Sub-Saharan Africa.



INTRODUCTION
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Figure 3. Intra-urban heterogeneity in Sub-Saharan Africa.



INTRODUCTION

Urban heterogeneity

— A method that works for a given urban area in SSA is not

guaranteed to work in another.

— Because of the heterogeneity characterizing the urban mosaic,

supervised learning is one of the most effective method.

— Optical sensors are not sufficient to discriminate built-up

areas from bare soil.



INTRODUCTION

Proposed methodology

— Taking advantage of open-access satellite datasets, both

optical and synthetic aperture radar (SAR): Landsat,
ERS-1&2, Envisat, Sentinel-1.

— Leveraging crowd-sourced geographic databases such as
OpenStreetMap to support the training of the classification

models.

— Tested in 44 case studies across Sub-Saharan Africa, and for
five different years: 1995, 2000, 2005, 2010 and 2015.



CASE STUDIES

Antananarivo, Madagascar
Bukavu, D.R. Congo
Dodoma, Tanzania
Ikirun, Nigeria
Kabwe, Zambia
Katsina, Nigeria
Kisumu, Kenya
Mbeya, Tanzania
Nairobi, Kenya
Nzerekore, Guinea
Onitsha, Nigeria
Pietermaritzburg, South Africa
San Pedro, Cote d’Ivoire

Toamasina, Madagascar

Windhoek, Namibia

Bouake, Céte d’Ivoire
Chimoio, Mozambique
Freetown, Sierra Leone
Iringa, Tanzania
Kampala, Uganda
Kayamandi, South Africa
Libreville, Gabon
Mekele, Ethiopia
Ndola, Zambia
Obuasi, Ghana
Ouagadougou, Burkina Faso
Pietersburg, South Africa
Shaki, Nigeria,
Tulear, Madagascar

Yamoussoukro, Cote d’Ivoire

Brazzaville, Congo
Dakar, Senegal
Gao, Mali
Johannesburg, South Africa
Kaolack, Senegal
Kinshasa, D.R. Congo
Lusaka, Zambia
Monrovia, Liberia
Nelspruit, South Africa
Okene, Nigeria
Owo, Nigeria
Saint-Louis, Senegal
Tamale, Ghana
Umuahia, Nigeria

Ziguinchor, Senegal



DATA AVAILABILITY
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Figure 4. SAR and optical imagery availability for each case study.



SAR & OprpTICcAL FUSION

Optical

— Good separation between vegetation and built-up areas.

— Confusion between bare soil and built-up areas.

SAR

— Good separation between bare soil and built-up areas.

— Confusion between dense vegetation and built-up areas.



SAR & OprpTICcAL FUSION

Figure 5. Detection of built-up areas in Gao, Mali:

a) VHR image of the area of interest, courtesy of Google Earth,

b) Normalized Difference Built-Up Index (NDBI) computed from Landsat 8 data,
c¢) Sentinel-1 VH backscattering



OpTICAL FUSION
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Figure 5. GLCM textures in Nairobi, Kenya.



SAR & OPTICAL DATA FUSION

Supervised learning

— Random Forest pixel-level supervised classification

— Features: Landsat bands, SAR textures

— Training samples extracted from OpenStreetMap



OPENSTREETMAP
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Figure 6. Bytes of informations in the OSM database for each
continent between 2014 and 2018.



OPENSTREETMAP

Built-up training samples

— Building footprints
— Urban blocks

Non-built-up training samples

— Natural objects (grass, forests, sand, rocks...)
— Leisure objects (parks, gardens, golf courses...)
— Land use objects (farms, orchards, quarries...)

— Distance from roads and buildings



OPENSTREETMAP

Figure 7. Urban blocks extracted from OSM in Ouagadougou, Burkina Faso.




OPENSTREETMAP
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Figure 8. Leisure, land use, and natural objects extracted from OSM in Dakar, Senegal.
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Figure 9. Availability of OSM roads and building footprints in each case study.



NAIROBI, KENYA
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NZEREKORE, GUINEA




VALIDATION

Antananarivo
Bukavu
Chimoio
Dakar
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Gao
Johannesburg
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Figure 16. Validation against an independent dataset (F1-scores).



VALIDATION

Method assessment
— High average accuracy (0.93)

— Lower scores in areas located in a mountainous and densely

vegetated environment, e.g. Bukavu, D.R. Congo.
— Lower scores as we go back in time

— Lower scores in urban areas with low data availability (satellite

or OpenStreetMap)



CONCLUSION

Combining Optical and SAR data

— Higher data availability in tropical areas

— Better classification performance in arid regions

OpenStreetMap as training data,

— Can act as a reference dataset to support the training of the

classification models

— Open-access and growing
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