

Mapping Land Cover and Land Use at Very High Spatial Resolution

Taïs Grippa – Université Libre de Bruxelles

Nairobi – 30th January 2019

BACK TO BASICS

PREREQUISITES

LC - LU

- Land cover (LC) mapping related to the physical characteristics of earth
 - surface elements (e.g., vegetation, water, built-up)
- Land use (LU) mapping

refers to the functions and activities that humans decided to carry out in certain locations (e.g., agricultural land, residential area, industrial area)

HR - VHR

- High resolution (HR) imagery
 → 10-30 meters
- Very-High resolution (VHR) imagery
 → < 1 meter

HR - VHR

High resolution

Very high resolution

RESEARCH WORKFLOW

MAUPP PROJECT – VHR MAPPING

LAND COVER MAPPING

Object-based image analysis (OBIA)

Object-based image analysis (OBIA)

Source: Kelly, 2011

Unsupervised segmentation parameter optimization (USPO)

371157N

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

. 668070E

668100E

Projection: WGS 1984 / UTM zone 30N (EPSG: 32630) © DigitalGlobe, Inc. All Rights Reserved

choice of segmentation parameters

21

choice of segmentation parameters

Influence of the

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

Projection: WGS 1984 / UTM zone 30N (EPSG: 32630) © DigitalGlobe, Inc. All Rights Reserved

choice of segmentation parameters

Projection: WGS 1984 / UTM zone 30N (EPSG: 32630) © DigitalGlobe, Inc. All Rights Reserved

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

segmentation parameter optimization (USPO)

Unsupervised

Projection: WGS 1984 / UTM zone 30N (EPSG: 32630) © DigitalGlobe, Inc. All Rights Reserved

371157N

Local approach for USPO

) Cliché Hydroconseil/ISL avril 200

Local approach for USPO

26

Local approach for USPO

Projection: WGS 1984 / UTM zone 30N (EPSG: 32630) © DigitalGlobe, Inc. All Rights Reserved

Optical - True color composite

0	0.5	1 km
- T	E .	1

Optical - True color composite

Land cover

0.8 km 0.4

UNIVERSITÉ LIBRE DE BRUXELLES

Semi-automated processing

LAND USE MAPPING

- Usually require exhaustive reference dataset which are not available for many SSA cities
- Our approach rely on EO-derived data and OSM
- Mapping land use at the street block level
 - Need of geometries of street block for using them in GIS \rightarrow again usually difficult to obtain
 - Creation of street block geometries from OpenStreetMap

40

- Characterization of street blocks for land use classification
 - Street block geometry (shape index, area)
 - RS-derived information (nDSM, NDVI)
 - LC-derived information (Landscape/Spatial metrics)

Street block area (ha)

0 3 6 km

Class High-elevated building - Patch density

0 3 6 km

Class Low-elevated building - Patch density

0 3 6 km

- Supervised classification using machine learning algorithm
 - Random Forest for supervised classification
 - Feature selection and classification using RF
 - Incorporation of an uncertainty class
 - Thresholding on proportion of built-up pixels to get different classes of density

6 km

3

Validation of products

- Land cover
 - Reaching about 90% of overall accuracy
- Land use
 - Reaching about **80%** of overall accuracy
- → Depending on the quality of the input data, the quality of the training data for the supervised classification and also the complexity of the built-up environment.

to other case studies

Transferability

- MAUPP project
 - Ouagadougou, Burkina Faso
 - Dakar, Senegal
- REACT project
 - Kampala, Uganda
- SmartPop project
 - Liège, Belgium
- WALLOUS project
 - All Walloon region, Belgium (+16 000 km²)

Mapping urban land use at street block level using OpenStreetMap, remote sensing data and spatial metrics

Published in ISPRS International Journal of Geo-Information

Land cover

Land use

Computer code available

- Initial processing chain => <u>HERE</u>
 Local approach implementation => <u>HERE</u>
 - Rule-based OBIA post-classification => <u>HERE</u>
 - Street blocks creation from OSM => <u>HERE</u>
- ∃ Spatial metrics as LU classification features
 => <u>HERE</u>

Hardware requirement

Large-scale cities + VHR = intensive processing

Ouagadougou example

- 615 km²
- +200 Gb data in total
- +15 10⁶ segments
- +50 Gb tabular file (csv)
- Segmentation: ±10 days using 17 cores
- Segment stats and classification: ±2 days
- Post-classification: ±1,5 days
- Land use: ±2 days

QUESTIONS ?